Cu-Dinitrosyl Species in Zeolites: A Density Functional Molecular Cluster Study

نویسندگان

  • R. Ramprasad
  • K. C. Hass
  • W. F. Schneider
  • J. B. Adams
چکیده

A small cluster model proposed earlier to examine bound Cu ions and their interaction with CO and NO in zeolites [Schneider, W. F.; Hass, K. C.; Ramprasad, R.; Adams, J. B. J. Phys. Chem. 1996, 100, 6032] is used to study Cu-bound dinitrosyl complexes. The possibility of a single-step, symmetric, concerted reaction occurring between the two nitrosyl ligands to form either a N-N bond or free N2 and O2 is addressed. Density functional theory is used to predict molecular and electronic structures and binding energies. N-down dinitrosyl binding to Cu0, Cu+, and Cu2+ can be represented as [Cu(I)-(NO)2], [Cu(I)-(NO)2], and [Cu(I)-(NO)2], respectively, with the dinitrosyl moiety closely resembling the free NO dimer, and having a long N-N bond (≈2.8 Å). Dinitrosyl species bound to Cu through the O display two distinct binding modes, one resembling the N-down dinitrosyl binding, again with a long N-N bond (≈2.0 Å), and the other similar to hyponitrite binding to a metal atom, displaying a short N-N bond (≈1.2 Å). The single-step, symmetric, concerted decomposition reaction of NO in the vicinity of Cu ion sites in zeolites is forbidden by orbital symmetry and is anticipated to have a comparable or higher activation barrier than the same reaction in the gas phase. Metastable hyponitrite complexes, on the other hand, display N-N coupling and may be precursors for a multistep decomposition of NO in the presence of Cu-exchanged zeolites.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ARTICLES Theoretical Study of CO and NO Vibrational Frequencies in Cu-Water Clusters and Implications for Cu-Exchanged Zeolites

Local spin density functional theory calculations of vibrational frequencies were performed for small Cucontaining complexes in an effort to assess models of exchanged Cu ion sites in zeolites and to help interpret infrared spectroscopy results. Model complexes consisted of Cun+ (n ) 0-2) ions with varying coordination to water ligands and to more realistic fragments of zeolites. Calculated CO ...

متن کامل

Density Functional Theory Study of Transformations of Nitrogen Oxides Catalyzed by Cu-Exchanged Zeolites

A previously reported density-functional-theory-based model of NO decomposition in Cu-exchanged zeolites (Schneider, W. F.; et al. J. Phys. Chem. B 1997, 101, 4353) is extended to consider more generally the Cu-zeolite catalyzed chemistry of nitrogen oxides. The catalyst active site is considered to be an isolated, zeolite (Z)-bound Cu ion, which can exist in either a reduced (Z--Cu(I)) or an o...

متن کامل

Density Functional Study on Stability and Structural Properties of Cu n clusters

In this research DFT/B3LYP method has been employed to investigate the geometrical structures,relative stabilities, and electronic properties of Cun (n=3–10) clusters for clarifying the effect of sizeon the properties. Through a careful analysis of the successive binding energies, second-orderdifference of energy and the highest occupied-lowest unoccupied molecular orbital energy gaps as afunct...

متن کامل

Coordination and Siting of Cu+ Ion Adsorbed into Silicalite-2 Porous Structure: A Density Functional Theory Study

Coordination of Cu+ ions adsorbed on plausible sites of a silicalite-2 lattice has been investigated computationally via hybrid density functional theory method at the B3LYP/6-311+G* and B3LYP/Def2-TZVP levels of theory using molecular models of the active site. The symmetrical coordination of Cu+ ions to almost five oxygen atoms of the all-silica framework in six-membered ring (6MR) sites of t...

متن کامل

Electronic Structure of the [Cu3(μ-O)3]2+ Cluster in Mordenite Zeolite and Its Effects on the Methane to Methanol Oxidation

Identifying Cu-exchanged zeolites able to activate C-H bonds and selectively convert methane to methanol is a challenge in the field of biomimetic heterogeneous catalysis. Recent experiments point to the importance of trinuclear [Cu3(μ-O)3]2+ complexes inside the micropores of mordenite (MOR) zeolite for selective oxo-functionalization of methane. The electronic structures of these species, nam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997